
Proving Termination by Policy Iteration

Damien Massé

LabSTICC

Université de Bretagne Occidentale

Brest, France

NSAD 2012

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 1 / 20

Motivation

Using policy iteration to prove termination.

1 Why?
(termination and �xpoint approximation)

2 How?
(a simple application)

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 2 / 20

Termination and �xpoint computation

Termination

We are looking for su�cient conditions for de�nite termination.

De�nite termination

Given a program represented by a transition system (Σ, τ), initial states
I ⊆ Σ, the program de�nitely terminates from an initial state i if every
computation from i terminates.

We want TI ⊆ I such that the program de�nitely terminates from all
elements of TI
Su�cient conditions → needed to prove termination.

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 3 / 20

Termination and �xpoint computation

Proving termination

Common method: ranking function r ∈ Σ→ O:

∀σ, σ′ ∈ Reach(TI), σ
τ→ σ′ =⇒ r(σ′) < r(σ)

Termination can also be expressed using �xpoint semantics (here
state-based):

with the set of (de�nitely) terminating states

TI ⊆ lfp p̃re where p̃re(X) = {σ|∀σ τ→ σ′, σ′ ∈ X}

with the set of (potentially) non-terminating states

TI ∩ gfp pre = ∅ where pre(X) = {σ|∃σ′ ∈ X , σ
τ→ σ′}

The iterates of these �xpoints give a ranking function.

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 4 / 20

Termination and �xpoint computation

Example

real x,y;
while (x+y<=10) { x=-2y // y=x-y+3; }

...

r 7→ 3

r 7→ 1

r 7→ 0

r 7→ 2

r 7→ 4

r 7→ 5

Σ = R2

pre(Σ) : x + y ≤ 10

s /∈ pre(Σ)⇒ r(s) = 0

pre2(Σ) : x + y ≤ 10 ∧ −3y + x ≤ 7

s ∈ pre(Σ) \ pre2(Σ)⇒ r(s) = 1

pre3(Σ) :
x + y ≤ 10 ∧ −3y + x ≤ 7
∧ − 3x + y ≤ 16

s ∈ pre2(Σ) \ pre3(Σ)⇒ r(s) = 2

. . .

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 5 / 20

Termination and �xpoint computation

Abstract �xpoint

To get su�cient conditions, you need either:

to underapproximate the least �xpoint;

to overapproximate the greatest �xpoint.

We want to use abstractions ⇒ choose the gfp.

We cannot use widenings.

gfp pre

underapproximation

pre

pre

∇

> = Σ

???
safe overapproximation

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 6 / 20

Policy iteration Introduction on policy iteration

Policy iteration

Policy/strategy iteration techniques have been used to compute exact
(abstract) �xpoints.
Two approaches, from Costan et al [CAV'05], or Gawlitza and Siedl
[CSL'07].

lfpφi1

lfpφ

X2

⊥

lfpwX1
φi2

X1

X3
lfpwX2

φi3

lfpwX3
φi4

φ = uφi

[Gawlitza and Seidl]

φ = tφi

[Costan et al.]

lfpφi1

lfpφi2

lfpφi3

The approach from below is
more appropriate:

It guarantees to reach the
least �xpoint.

And any intermediate
result is correct.

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 7 / 20

Policy iteration The algorithm

Algorithm (for gfp)

Suppose φ = u{φi}, φi are the strategies such that ∀x , ∃i , φ(x) = φi (x).
The algorithm has two steps, given an initial postsolution x = >:

1 Strategy selection: select φi such that φi (x) = φ(x).

2 Strategy solving: compute x = gfpvx φi . Stop if x = φ(x).

Two questions:

1 does the algorithm terminate (and returns gfpφ)?
Yes, under some conditions (e.g. every strategy is selected at

most once).

2 can we compute gfpvxφi?
Yes, under some conditions (e.g. x is consistent w.r.t. φi).

We can only use this method on speci�c classes of programs and abstract
domains.

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 8 / 20

Computing the semantics Framework

A�ne programs

An a�ne program is de�ned by (N,E , st) where

N is the �nite set of program points;

E ⊆ N × Stmt× N transitions labeled by statements;

st initial program point.

Statements are pairs of the form (g ; a) such that:

g is an a�ne guard Ax + b ≥ 0 on the program variables x

a is an a�ne assignment x := Ax + b.

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 9 / 20

Computing the semantics Framework

Template polyhedral domain

Abstraction of ℘ (Rn) relative to a template constraint matrix T ∈ Rm×n:

℘ (Rn) −−−−→←−−−−
αT

γT
(R ∪ {−∞,+∞})m

with γT (ρ) = {x ∈ Rn |Tx ≤ ρ}.

Example: octagons with two variables: T =



0 1
0 −1
1 0
−1 0
1 1
1 −1
−1 1
−1 −1


→ 8 �abstract� variables (Cy , C−y , . . .).

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 10 / 20

Computing the semantics Reachability analysis [Gawlitza and Seidl]

Abstract (forward) semantics

The abstract semantics of an a�ne program can be expressed as the least
solution of a system of equations of the form Cv := e with:

e ::= a | Cw | e + e | b · e | e ∨ e | e ∧ e | LPA,b(e, . . . , e)

LPA,b denotes a linear program:

LPA,b(x1, . . . , xm) = max{bT y |y ∈ Rn,Ay ≤ x}

This is a system of rational equations with linear programs.

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 11 / 20

Computing the semantics Reachability analysis [Gawlitza and Seidl]

Strategy selection and solving

A strategy associates each ∨-formula to one of its subformula.
The application of a strategy gives a system of conjunctive equations with
linear programs:

e ::= a | Cw | e + e | b · e | e ∧ e | LPA,b(e, . . . , e)

Although LPs can be treated as the minimum of several linear expressions,
they are dealt with by adding new variables and constraints.

Results

Once the strategy is selected, the �xpoint can be computed by solving
two linear programs.

Each strategy is selected at most once, the algorithm terminates.

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 12 / 20

Computing the semantics Backward semantics

Abstract backward semantics

Abstract backward semantics: gfpαT ◦ pre ◦ γT .

Proposition

The abstract backward semantics of the a�ne program is the greatest
solution of a system of equations on C of the form:

Cv := U1 ∨ U2 ∨ . . . ∨ Uk with Ui := φi ∧ ψi

where

φi is of the form (if {y|Ay + b ≤ C} 6= ∅ then ∞ else −∞)

ψi is a linear program, which can be expressed as:

ψi =
∧
{λT · (C− b)|λ ≥ 0 ∧ ATλ = V }

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 13 / 20

Computing the semantics Backward semantics

Example

real x,y;
while (x+y<=10) { x=-2y // y=x-y+3; }

Cx = φ ∧ ψ with
φ = −∞ i� the set of constraints { x + y − 10 ≤ 0, x − y + 3 ≤ Cy , −x + y − 3 ≤ C−y ,
−2y ≤ Cx , 2y ≤ C−x , x − 3y + 3 ≤ Cx+y , −x − y − 3 ≤ Cx−y , x + y + 3 ≤ C−x+y ,

−x + 3y − 3 ≤ C−x−y} is unsatis�able.
ψ = min{10λ0 + λ1(Cy − 3) + λ2(C−y + 3) + λ3Cx + λ4C−x + λ5(Cx+y − 3)

+λ6(Cx−y + 3) + λ7(C−x+y − 3) + λ8(C−x−y + 3)
|λ ≥ 0 ∧ λ0 + λ1 − λ2 + λ5 − λ6 + λ7 − λ8 = 1

∧λ0 − λ1 + λ2 − 2λ3 + 2λ4 − 3λ5 − λ6 + λ7 + 3λ8 = 0}

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 14 / 20

Computing the semantics Policy iteration

Strategy construction

Vertex principle of linear programming

ψi is the minimum of a �nite set of a�ne expressions, each one being
related to an optimal solution of the linear program.

1 Select between φi and ψi .

I if φi evaluates to ∞, select φi

I otherwise, replace the expression by −∞.

2 Extract an a�ne expression from φi .
I Computing at once all the a�ne expressions is costly.
I So we can compute the a�ne expressions lazily.

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 15 / 20

Computing the semantics Policy iteration

Example

ψ = min{10λ0 + λ1(Cy − 3) + λ2(C−y + 3) + λ3Cx + λ4C−x + λ5(Cx+y − 3)
+λ6(Cx−y + 3) + λ7(C−x+y − 3) + λ8(C−x−y + 3)

|λ ≥ 0 ∧ λ0 + λ1 − λ2 + λ5 − λ6 + λ7 − λ8 = 1

∧λ0 − λ1 + λ2 − 2λ3 + 2λ4 − 3λ5 − λ6 + λ7 + 3λ8 = 0}
With Cx+y = 10 and Cx = C−x = . . . = C−x−y = +∞, the optimal
solution is:

λ5 = 0.25 λ0 = 0.75 λi = 0 for i /∈ {0, 5}

which gives the a�ne expression:

6.75 + 0.25Cx+y

We replace ψ by this expression.

Strategy

The strategy selection step gives a system of disjunctive equations.

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 16 / 20

Computing the semantics Result

Results

Strategy solving

Once the strategy is constructed, its solution (≤ a consistent postsolution)
can be computed by solving to linear programs extractable from the system
in linear time.

Strategy improvement

The strategy improvement operator preserves the consistency of the
postsolution.

Final result

The algorithm terminates and returns the abstract semantics gfp pre].

The number of iterations may be exponential (we expect it to remain low
in practice). However, any intermediate result is a safe overapproximation.

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 17 / 20

Computing the semantics Result

Example

real x,y;
while (x+y<=10) { x=-2y // y=x-y+3; }

Strategy Solution

1 Cx+y = 10 x + y ≤ 10

2 Cx = 6.75 + 0.25Cx+y , Cx+y = 10, x ≤ 9.25, x + y ≤ 10

Cx−y = 3.5 + Cx+y/2 x − y ≤ 8.5
3 Cx = 6.75 + 0.25Cx+y , Cx+y = 10, x ≤ 9.25, −4.625 ≤ y

Cx−y = 3.5 + Cx+y/2, C−y = 0.5Cx , −11.5 ≤ x + y ≤ 10

C−x−y = 3 + Cx−y x − y ≤ 8.5
4 Cx = 6.75 + 0.25Cx+y , Cx+y = 10, −9.5625 ≤ x ≤ 9.25

Cx−y = 3.5 + Cx+y/2, C−y = 0.5Cx , −4.625 ≤ y ≤ 6.125
C−x−y = 3 + Cx−y ,Cy = 3.25 + 0.25C−x−y −11.5 ≤ x + y ≤ 10

Cy−x = 3 + C−y , C−x = 3 + 0.5C−x−y + 0.5C−y −7.625 ≤ x − y ≤ 8.5
5 Cx = −3 + 0.5C−x−y + 0.5Cy , x = −1.5, y = 0.75

Cx+y = −3 + C−x+y , Cx−y = −3 + Cy

C−y = 0.5Cx , C−x−y = 3 + Cx−y ,
Cy = 0.5C−x , Cy−x = 3 + C−y ,
C−x = 3 + 0.5C−x−y + 0.5C−y

The program terminates from any state 6= (−1.5, 0.75).

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 18 / 20

Computing the semantics Relationships with ranking functions

Discussion on ranking functions

Our method computes exactly the abstract semantics, i.e.:

S = gfp (ρT ◦ pre) where ρT = γT ◦ αT

The iterates give a ranking function r on Σ \S , where S ∪ r(n ↑) ∈ Im(ρT).
Conversely, if a ranking function of this form exists, our method proves the
termination.

Theorem

Our approach proves the termination on Σ \ Z with the template matrix T
if and only if there exists a ranking function r such that
{r(n ↑) ∪ Z} ⊆ Im(γT).

Hence, if the program admits a linear ranking function x 7→ Vx , we can
prove the termination if −V is a row of T .

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 19 / 20

Conclusion

Conclusion

First attempt to use policy iteration for termination properties.

Improvements

Non-determinism.

Incremental construction of the template matrix.

Other weakly relational domains (previous work).

Future work

Comparison with other methods.

Mixing with other methods.

Damien Massé (LabSTICC-UBO) Proving Termination by Policy Iteration NSAD 2012 20 / 20

	Termination and fixpoint computation
	Policy iteration
	Introduction on policy iteration
	The algorithm

	Computing the semantics
	Framework
	Reachability analysis [Gawlitza and Seidl]
	Backward semantics
	Policy iteration
	Result
	Relationships with ranking functions

	Conclusion

