An Accurate Join for Zonotopes, Preserving Affine Input/Output Relations

Eric Goubault, Tristan Le Gall : and Sylvie Putot CEA, LIST - LMeASI NSAD'12

Static Analysis of Numerical Programs

- Goal : to find numerical invariants, to give an upper bound for numerical errors
- Problems:
- infinite domains \Rightarrow symbolic representation
- precision, difference between real numbers arithmetics and floating-point arithmetics
- infinite loops, numerical drift (e.g. Patriot missile)

Numerical Abstract Domains

- Classical ones : Intervals, convex polyhedra
- Recent ones: Octagons, linear templates
- In Fluctuat: Affine sets (zonotopes)

Static Analysis of Numerical Programs

- Goal : to find numerical invariants, to give an upper bound for numerical errors
- Problems:
- infinite domains \Rightarrow symbolic representation
- precision, difference between real numbers arithmetics and floating-point arithmetics
- infinite loops, numerical drift (e.g. Patriot missile)

Numerical Abstract Domains

- Classical ones : Intervals, convex polyhedra
- Recent ones: Octagons, linear templates
- In Fluctuat: Affine sets (zonotopes)

We present a new, accurate join operator for zonotopes

Outline

Presentation of the abstract domain

A new join operator

Experiments

Symbolic representation

- Each variable $=$ linear sum of noise symbols : $\hat{x}=20-4 \varepsilon_{1}+2 \varepsilon_{3}+3 \varepsilon_{4}$
- Noise symbols are shared variables, whose range is $[-1,1]$
- Alternative definition: Minkowski sum of vectors defined by the coefficients of the noise symbols

| An affine set and its concretization |
| :--- | :--- | :--- | :--- |

Functional Order, Augmented Space

- Partial order on affine sets is a functional order

Example

$\hat{x}=2+\epsilon$ and $\hat{x}=2-\epsilon$ (concretization : [1, 3])

Functional Order, Augmented Space

- Partial order on affine sets is a functional order
- Functional order \neq geometrical order of the concretization in \mathbb{R}^{p}

```
Example
x}=2+\epsilon\mathrm{ and }\hat{x}=2-\epsilon(concretization:[1,3]
```


Functional Order, Augmented Space

- Partial order on affine sets is a functional order
- Functional order \neq geometrical order of the concretization in \mathbb{R}^{p}
- Functional order $=$ geometrical order in augmentend space \mathbb{R}^{p+n}

Example
 $\hat{x}=2+\epsilon$ and $\hat{x}=2-\epsilon$ (concretization: $[1,3])$

Consider two affines sets $\hat{x}=2+3 \epsilon_{1}-2 \epsilon_{2}$ and $\hat{y}=3+2 \epsilon_{2}$
Addition $x+y$

- Exact operation

$$
\widehat{x+y}=5+3 \epsilon_{1}
$$

Multiplication $x \times y$

- Exact operation

$$
\widehat{x \times y}=6+9 \epsilon_{1}+(4-6) \epsilon_{2}+6 \epsilon_{1} \epsilon_{2}-4 \epsilon_{2}^{2}
$$

Consider two affines sets $\hat{x}=2+3 \epsilon_{1}-2 \epsilon_{2}$ and $\hat{y}=3+2 \epsilon_{2}$

Addition $x+y$

- Exact operation

$$
\widehat{x+y}=5+3 \epsilon_{1}
$$

Multiplication $x \times y$

- Exact operation

$$
\widehat{x \times y}=6+9 \epsilon_{1}+(4-6) \epsilon_{2}+6 \epsilon_{1} \epsilon_{2}-4 \epsilon_{2}^{2}
$$

- Second-order terms range in $[-10,2.25]=-3.875+6.125 \eta_{1}$

$$
\widehat{x \times y}=2.125+9 \epsilon_{1}-2 \epsilon_{2}+6.125 \eta_{1}
$$

Zonotopes (4) : Advantages and Drawbacks

Advantages

- Relational lattice, cheap linear assignments
- Non-linear assignments (Taylor, 1st order)

Drawbacks

- Meet
- Join

Zonotopes (4) : Advantages and Drawbacks

Advantages

- Relational lattice, cheap linear assignments
- Non-linear assignments (Taylor, 1st order)

Drawbacks / improvements

- Meet : constrained affine sets
- Join

Zonotopes (4) : Advantages and Drawbacks

Advantages

- Relational lattice, cheap linear assignments
- Non-linear assignments (Taylor, 1st order)

Drawbacks / improvements

- Meet : constrained affine sets
- Join : global join

```
Example of join
double x1 := [1,3];
double x2:= [1,3];
double x3;
if (random()) {
    x1 = x1 + 2;
    x2 = x2 + 2;}
x3 = x2 - x1;
```

Affine sets :

$$
\begin{aligned}
& \hat{x_{1}}=2+\epsilon_{1} \\
& \hat{x_{2}}=2+\epsilon_{2} \quad \text { and } \\
& \hat{x_{3}}=T
\end{aligned}
$$

Example (2)

- Componentwise join (one dimension at a time)

$$
\begin{aligned}
& \hat{x_{1}}=3+\epsilon_{1}+\eta_{1} \\
& \hat{x_{2}}=3+\epsilon_{2}+\eta_{2} \\
& \hat{x_{3}}=\mathrm{T}
\end{aligned}
$$

- Componentwise join (one dimension at a time)
- Common affine relation : $x_{1}-x_{2}=\epsilon_{1}-\epsilon_{2}$

- Componentwise join (one dimension at a time)
- Common affine relation : $x_{1}-x_{2}=\epsilon_{1}-\epsilon_{2}$
- Global join

Goal : to preserve affine relations

- Two affine sets X and Y, p variables $x_{1} \ldots x_{p}, n+1$ noise symbols $\varepsilon_{0}, \ldots, \varepsilon_{n}$
- An affine relation: $\alpha_{1} x_{1}+\cdots+\alpha_{p} x_{p}=\beta_{0} \varepsilon_{0}+\beta_{1} \varepsilon_{1}+\cdots+\beta_{n} \varepsilon_{n}$
- Our goal : to find an upper bound Z that preserves common affine relations

Goal: to preserve affine relations

- Two affine sets X and Y, p variables $x_{1} \ldots x_{p}, n+1$ noise symbols $\varepsilon_{0}, \ldots, \varepsilon_{n}$
- An affine relation: $\alpha_{1} x_{1}+\cdots+\alpha_{p} x_{p}=\beta_{0} \varepsilon_{0}+\beta_{1} \varepsilon_{1}+\cdots+\beta_{n} \varepsilon_{n}$
- Our goal : to find an upper bound Z that preserves common affine relations

Issues

1. How to discover common affine relations?
2. How to reduce the size of the problem?
3. How to rebuild the affine sets with the help of the affine relations?

Geometrical intuition

Augmented space

- Program variables + noise symbols : vector space, dimension $p+n+1$
- Functional order $=$ geometrical order
- A relation defines an hyperplane containing the zonotope.

Augmented space

- Program variables + noise symbols : vector space, dimension $p+n+1$
- Functional order = geometrical order
- A relation defines an hyperplane containing the zonotope.

General algorithm
Assume we have k relations, defining the variables x_{1}, \ldots, x_{k}, we compute $X \sqcup_{G} Y$:

1. Existential quantification: $X_{>k}$ and $Y_{>k}$ (elimination of x_{1}, \ldots, x_{k})
2. Componentwise join $Z_{>k}=X_{>k} \sqcup Y_{>k}$
3. Reconstruction (intersection with hyperplanes)

Any relation true for both X and Y is also true for Z.

Algorithm to find affine relations

1. The value of each variable is replaced by its expression (linear sum of noise symbol)
2. The coefficients of noise symbols must be equal in both affine sets X and Y
3. One equation per noise symbol, then we solve them by a Gauss reduction to obtain the coefficients α_{i}, then the coefficients β_{i}
4. Solutions belong to a vector space (finite dimension)

Example

Affine sets X and Y :

$$
\begin{aligned}
& x_{1}=2+\epsilon_{1} \quad \text { and } \\
& x_{2}=2+\epsilon_{2} \quad \begin{array}{l}
x_{1}=4+\epsilon_{1} \\
x_{2}=4+\epsilon_{2} \\
x_{3}=\top
\end{array} \quad x_{3}=\top
\end{aligned}
$$

We are looking for a relation :

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2}=\beta_{0}+\beta_{1} \epsilon_{1}+\beta_{2} \epsilon_{2}
$$

Discovery of common affine relations (2)

Affine sets X and Y :

$$
\begin{aligned}
& x_{1}=2+\epsilon_{1} \\
& x_{2}=2+\epsilon_{2} \text { and } \begin{array}{l}
x_{1}=4+\epsilon_{1} \\
x_{2}=4+\epsilon_{2} \\
x_{3}=T
\end{array} \quad x_{3}=\top
\end{aligned}
$$

Example (cont.)

1. We replace x_{1} and x_{2} by their expressions:

$$
\alpha_{1}\left(2+\epsilon_{1}\right)+\alpha_{2}\left(2+\epsilon_{2}\right)=\beta_{0}+\beta_{1} \epsilon_{1}+\beta_{2} \epsilon_{2}
$$

and :

$$
\alpha_{1}\left(4+\epsilon_{1}\right)+\alpha_{2}\left(4+\epsilon_{2}\right)=\beta_{0}+\beta_{1} \epsilon_{1}+\beta_{2} \epsilon_{2}
$$

Affine sets X and Y :

$$
\begin{aligned}
& x_{1}=2+\epsilon_{1} \\
& x_{2}=2+\epsilon_{2} \\
& x_{3}=T
\end{aligned} \text { and } \begin{aligned}
& x_{1}=4+\epsilon_{1} \\
& x_{2}=4+\epsilon_{2} \\
& x_{3}=\top
\end{aligned}
$$

Example (cont.)

1. We replace x_{1} and x_{2} by their expressions:

$$
\alpha_{1}\left(2+\epsilon_{1}\right)+\alpha_{2}\left(2+\epsilon_{2}\right)=\beta_{0}+\beta_{1} \epsilon_{1}+\beta_{2} \epsilon_{2}
$$

and :

$$
\alpha_{1}\left(4+\epsilon_{1}\right)+\alpha_{2}\left(4+\epsilon_{2}\right)=\beta_{0}+\beta_{1} \epsilon_{1}+\beta_{2} \epsilon_{2}
$$

2. The coefficients of the noise symbols must be equal ; we get the equations: $2 \alpha_{1}+2 \alpha_{2}=4 \alpha_{1}+4 \alpha_{2}$, and $\beta_{0}=0, \beta_{1}=\alpha_{1}, \beta_{2}=\alpha_{2}$

Affine sets X and Y :

$$
\begin{aligned}
& x_{1}=2+\epsilon_{1} \\
& x_{2}=2+\epsilon_{2} \\
& x_{3}=T
\end{aligned} \text { and } \begin{aligned}
& x_{1}=4+\epsilon_{1} \\
& x_{2}=4+\epsilon_{2} \\
& x_{3}=\top
\end{aligned}
$$

Example (cont.)

1. We replace x_{1} and x_{2} by their expressions:

$$
\alpha_{1}\left(2+\epsilon_{1}\right)+\alpha_{2}\left(2+\epsilon_{2}\right)=\beta_{0}+\beta_{1} \epsilon_{1}+\beta_{2} \epsilon_{2}
$$

and :

$$
\alpha_{1}\left(4+\epsilon_{1}\right)+\alpha_{2}\left(4+\epsilon_{2}\right)=\beta_{0}+\beta_{1} \epsilon_{1}+\beta_{2} \epsilon_{2}
$$

2. The coefficients of the noise symbols must be equal ; we get the equations: $2 \alpha_{1}+2 \alpha_{2}=4 \alpha_{1}+4 \alpha_{2}$, and $\beta_{0}=0, \beta_{1}=\alpha_{1}, \beta_{2}=\alpha_{2}$
3. Example of solution : $\alpha_{1}=1, \alpha_{2}=-1, \beta_{0}=0, \beta_{1}=1, \beta_{2}=-1$

Affine sets X and Y :

$$
\begin{aligned}
& x_{1}=2+\epsilon_{1} \\
& x_{2}=2+\epsilon_{2} \\
& x_{3}=\top
\end{aligned} \text { and } \begin{aligned}
& x_{1}=4+\epsilon_{1} \\
& x_{2}=4+\epsilon_{2} \\
& x_{3}=\top
\end{aligned}
$$

Example (cont.)

1. We replace x_{1} and x_{2} by their expressions:

$$
\alpha_{1}\left(2+\epsilon_{1}\right)+\alpha_{2}\left(2+\epsilon_{2}\right)=\beta_{0}+\beta_{1} \epsilon_{1}+\beta_{2} \epsilon_{2}
$$

and :

$$
\alpha_{1}\left(4+\epsilon_{1}\right)+\alpha_{2}\left(4+\epsilon_{2}\right)=\beta_{0}+\beta_{1} \epsilon_{1}+\beta_{2} \epsilon_{2}
$$

2. The coefficients of the noise symbols must be equal ; we get the equations: $2 \alpha_{1}+2 \alpha_{2}=4 \alpha_{1}+4 \alpha_{2}$, and $\beta_{0}=0, \beta_{1}=\alpha_{1}, \beta_{2}=\alpha_{2}$
3. Example of solution : $\alpha_{1}=1, \alpha_{2}=-1, \beta_{0}=0, \beta_{1}=1, \beta_{2}=-1$
4. Relation : $x_{1}=x_{2}+\varepsilon_{1}-\varepsilon_{2}$

Other steps of the algorithm

Algorithm

Assume we have k relations, defining the variables x_{1}, \ldots, x_{k}. We compute $X \sqcup_{G} Y$

1. Existential quantification : $X_{>k}$ and $Y_{>k}$ (elimination of x_{1}, \ldots, x_{k})
2. Componentwise join $Z_{>k}=X_{>k} \sqcup Y_{>k}$
3. Reconstruction

Example

Relation $x_{1}=x_{2}+\epsilon_{1}-\epsilon_{2}$.

$$
X=\left\{\begin{array}{l}
\hat{x_{1}}=2+\epsilon_{1} \\
\hat{x_{2}}=2+\epsilon_{2} \\
\hat{x_{3}}=T
\end{array} \quad Y=\left\{\begin{array}{l}
\hat{x_{1}}=4+\epsilon_{1} \\
\hat{x_{2}}=4+\epsilon_{2} \\
\hat{x_{3}}=T
\end{array}\right.\right.
$$

Other steps of the algorithm

Algorithm

Assume we have k relations, defining the variables x_{1}, \ldots, x_{k}. We compute $X \sqcup_{G} Y$

1. Existential quantification: $X_{>k}$ and $Y_{>k}$ (elimination of x_{1}, \ldots, x_{k})
2. Componentwise join $Z_{>k}=X_{>k} \sqcup Y_{>k}$
3. Reconstruction

Example

Relation $x_{1}=x_{2}+\epsilon_{1}-\epsilon_{2}$.

$$
X_{>k}=\left\{\begin{array}{l}
\hat{x_{1}}=\top \\
\hat{x_{2}}=2+\epsilon_{2} \\
\hat{x_{3}}=\top
\end{array} \quad Y_{>k}=\left\{\begin{array}{l}
\hat{x_{1}}=\top \\
\hat{x_{2}}=4+\epsilon_{2} \\
\hat{x_{3}}=\top
\end{array}\right.\right.
$$

Other steps of the algorithm

Algorithm

Assume we have k relations, defining the variables x_{1}, \ldots, x_{k}. We compute $X \sqcup_{G} Y$

1. Existential quantification : $X_{>k}$ and $Y_{>k}$ (elimination of x_{1}, \ldots, x_{k})
2. Componentwise join $Z_{>k}=X_{>k} \sqcup Y_{>k}$
3. Reconstruction

Example

Relation $x_{1}=x_{2}+\epsilon_{1}-\epsilon_{2}$.

Other steps of the algorithm

Algorithm

Assume we have k relations, defining the variables x_{1}, \ldots, x_{k}. We compute $X \sqcup_{G} Y$

1. Existential quantification : $X_{>k}$ and $Y_{>k}$ (elimination of x_{1}, \ldots, x_{k})
2. Componentwise join $Z_{>k}=X_{>k} \sqcup Y_{>k}$
3. Reconstruction

Example

Relation $x_{1}=x_{2}+\epsilon_{1}-\epsilon_{2}$.

$$
X=\left\{\begin{array}{l}
\hat{x_{1}}=2+\epsilon_{1} \\
\hat{x}_{2}=2+\epsilon_{2} \\
\hat{x_{3}}=T
\end{array} \quad Y=\left\{\begin{array}{l}
\hat{x_{1}}=4+\epsilon_{1} \\
\hat{x_{2}}=4+\epsilon_{2} \\
\hat{x_{3}}=\top
\end{array} \quad Z=\left\{\begin{array}{l}
\hat{x_{1}}=3+\epsilon_{1}+\eta \\
\hat{x_{2}}=3+\epsilon_{2}+\eta \\
\hat{x_{3}}=\top
\end{array}\right.\right.\right.
$$

Theorem
$Z=X \sqcup_{G} Y$ is an upper bound of X and Y, and if $Z_{>k}$ is a minimal upper bound of $X_{>k}$ and $Y_{>k}$, then Z is a minimal upper bound of X and Y.

Theorem
 $Z=X \sqcup_{G} Y$ is an upper bound of X and Y, and if $Z_{>k}$ is a minimal upper bound of $X_{>k}$ and $Y_{>k}$, then Z is a minimal upper bound of X and Y.

Remarks

- Any relation true for X and Y is also true for Z
- The componentwise join $Z_{>k}=X_{>k} \sqcup Y_{>k}$ is a minimal upper bound if $k=p-1$
- We can do the same for the widening

Experiments (1) : Loop counter

```
Program 1
double }x=[0,4]\mathrm{ ;
int i=0;
while i}\leq5
    i++;
    x++;}
```

- Issue : (lack of) explicit relation between x and i

Experiments (1) : Loop counter

```
Program 1
double }x=[0,4]\mathrm{ ;
int i=0;
while i}\leq5
    i++;
    x++;}
```

- Issue : (lack of) explicit relation between x and i
- Componentwise join : no convergence (without widening)

Experiments (1) : Loop counter

```
Program 1
double }x=[0,4]\mathrm{ ;
int i=0;
while i }\leq5
    i++;
    x++;}
```

- Issue : (lack of) explicit relation between x and i
- Componentwise join : no convergence (without widening)
- Global join : loop invariant $x-i=2+2 \epsilon_{1}$ (thus $\left.x \in[0,10]\right)$

Experiments (2) : Linear recurrence

```
Program 2
double x=12;
double }\times1=12\mathrm{ ;
double y=16;
double y1=16;
while (true) {
    x=x1;
    y=y1;
    x1=3*x/4 + y/4;
    y1=x/4 + 3* y/4;}
```

```
Program 2
double x=12;
double }\times1=12\mathrm{ ;
double y=16;
double y1=16;
while (true) {
    x=x1;
    y=y1;
    x1=3*x/4 + y/4;
    y1=x/4 + 3* y/4;}
```

componentwise join


```
Program 2
double x=12;
double }\times1=12\mathrm{ ;
double y=16;
double y1=16;
while (true) {
    x=x1;
    y=y1;
    x1=3*x/4 + y/4;
    y1=x/4 + 3* y/4;}
```

componentwise join

global join

Experiments (3) : Benchmarks

```
Program 3
double f(double x) {
    return 2*x-3; }
    double g(double x) {
        return -x+5; }
    int main() {
    y=f(0); z = g(0);
    u}=\textrm{f}(.75);v=g(.25)
    for (i=1; i i =N ; i++) {
        x=[0,((double)i)/N];
        y=f(x); z=g(x) ;
        u=f(v);v=g(u)/2; }
    t=y+2*z; return 0; }
```

Increasing N increases the number of operations, but does not change the result.

Experiments (3) : Benchmarks

Exact result : only polyhedra and zonotopes with global join

Summary

- A nice improvement of the join operator for zonotopes
- Implementation (APRON)

Ongoing work

- Implementation (Fluctuat)
- Imprecise relations
- Policy Iteration

