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.. Motivation

(Static Analysis of Numerical Programs

> Goal : to find numerical invariants, to give an upper bound for numerical
errors

» Problems :

> infinite domains =- symbolic representation
> precision, difference between real numbers arithmetics and floating-point
arithmetics

> infinite loops, numerical drift (e.g. Patriot missile)
| J

( . .
Numerical Abstract Domains
> Classical ones : Intervals, convex polyhedra

» Recent ones : Octagons, linear templates

> In Fluctuat : Affine sets (zonotopes)
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» Recent ones : Octagons, linear templates

> In Fluctuat : Affine sets (zonotopes)

We present a new, accurate join operator for zonotopes
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.. Zonotopes (1) : Symbolic Representation and Concretization

( . .
Symbolic representation
» Each variable = linear sum of noise symbols : X = 20 — 4¢1 4 2e3 + 3ea

> Noise symbols are shared variables, whose range is [—1, 1]

> Alternative definition : Minkowski sum of vectors defined by the
coefficients of the noise symbols

(An affine set and its concretization

15+ The gray zonotope is

™~ the concretization of the
affine set (%, ¥), with

10 X =20 — 4e1 + 2e3 + 3eq,
¥ =10 — 261 + €2 — €4,
~ and 'A =

5 ™ (20 -4 0 2 3 >
X
10 15 20 25 30 10 -2 1 0 -1




Bl Zonotopes (2) : Partial order

Functional Order, Augmented Space
» Partial order on affine sets is a functional order

\. J

'Example
%X =2+¢€and X =2 — ¢ (concretization : [1,3])

€
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(] Zonotopes (2) : Partial order

4 .
Functional Order, Augmented Space
» Partial order on affine sets is a functional order

» Functional order # geometrical order of the concretization in R”

» Functional order = geometrical order in augmentend space R"t"
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Example
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(] Zonotopes (3) : Semantics of + and x

Consider two affines sets X =2+ 3e1 — 2e; and ¥y = 3+ 262

(Addition x + y
» Exact operation

x+y=543a

\ J

(Multiplication XXy
» Exact operation

—

XXy =06+09€ + (4 —6)ex + berer — 4e5
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(] Zonotopes (3) : Semantics of + and x

Consider two affines sets X = 2 + 3¢; — 2¢; and y = 3+ 2¢e;

(Addition x + y
» Exact operation

x+y=543a

| J

(Multiplication XXy
» Exact operation

X/>-<\y =6+ 9¢ + (4 — 6)62 + 6erex — 46%
» Second-order terms range in [—10,2.25] = —3.875 + 6.125n;

X X y = 2.125 4+ 9¢1 — 26, + 6.125m,
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EEe Zonotopes (4)

: Advantages and Drawbacks

(Adva ntages

> Relational lattice, cheap linear assignments

> Non-linear assignments (Taylor, 1st order)

\.

(Drawbacks

> Meet

> Join

7/19



BE Zonotopes (4) : Advantages and Drawbacks

(Adva ntages

> Relational lattice, cheap linear assignments

> Non-linear assignments (Taylor, 1st order)

\.

(Drawbacks / improvements

» Meet : constrained affine sets

> Join

7/19
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(Adva ntages

> Relational lattice, cheap linear assignments

> Non-linear assignments (Taylor, 1st order)

(Drawbacks / improvements

» Meet : constrained affine sets

> Join : global join
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B Example (1)

(Example of join
double x1 := [1,3];
double x2 := [1,3];

double x3;
if (random()) {
x1 =x1+ 2;
x2=x2+4+2;}
x3 = x2 - x1;
G J
Affine sets :
X1 = 24e€e X1 = 44«
X = 2+4+e6 and X = 446
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Example (2)

9/19



(] ] Example (2)

X2

0 1 3 5 X1

» Componentwise join (one dimension at a time)

X1 = 34+ea+m
X2 = 34+e+mn
5 = T



(] ] Example (2)

X2

0 1 3 5 X

» Componentwise join (one dimension at a time)

» Common affine relation : x; — x> = €1 — €2
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(] ] Example (2)

X2

0 1 3 5 X

» Componentwise join (one dimension at a time)
» Common affine relation : x; — x2 = €1 — &2

> Global join



.. Main idea

( . . )
Goal : to preserve affine relations
> Two affine sets X and Y, p variables xi ... x,, n+ 1 noise symbols
E0y---5En

> An affine relation : a1xi + - - + apxp = Bogo + Bie1 + - -+ + Buen

» Our goal : to find an upper bound Z that preserves common affine
relations
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.. Main idea

(Goal : to preserve affine relations
> Two affine sets X and Y, p variables xi ... x,, n+ 1 noise symbols
E0y---5En
> An affine relation : cixi + - -+ + apXxp = Poco + Pie1 + - + Bnen

» Our goal : to find an upper bound Z that preserves common affine
relations

P
Issues

1. How to discover common affine relations ?

2. How to reduce the size of the problem ?

3. How to rebuild the affine sets with the help of the affine relations?
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.. Geometrical intuition

L/

(Augmented space
> Program variables + noise symbols : vector space, dimension p+n+1

» Functional order = geometrical order

> A relation defines an hyperplane containing the zonotope.
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.. Geometrical intuition

(Augmented space
> Program variables + noise symbols : vector space, dimension p+n+1

> Functional order = geometrical order

> A relation defines an hyperplane containing the zonotope.

" General algorithm

Assume we have k relations, defining the variables xi, ..., xx, we compute
XUgY:
1. Existential quantification : X5 and Y54 (elimination of x1,. .., x«)

2. Componentwise join Zsx = Xsk U Ysi

3. Reconstruction (intersection with hyperplanes)

\Any relation true for both X and Y is also true for Z.
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.. Discovery of common affine relations

(Algorithm to find affine relations

~

1. The value of each variable is replaced by its expression (linear sum of noise
symbol)

2. The coefficients of noise symbols must be equal in both affine sets X and
Y

3. One equation per noise symbol, then we solve them by a Gauss reduction
to obtain the coefficients «; , then the coefficients §;

4. Solutions belong to a vector space (finite dimension)
|\

( A
Example

Affine sets X and Y :

x1 = 24+e x1 = 4+e
x» = 246 and xx = 446
X3 = T X3 = T

We are looking for a relation :

L a1x1 + aoxe = Po + Pier + Pee
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(] ] Discovery of common affine relations (2)

Affine sets X and Y :

X1

24+ € x1 = 4+¢e
xx = 24+e& and x = 4+e
X3 = T X3 = T
(Example (cont.) )

1. We replace x; and x> by their expressions :

a1(2+e) + 2+ ) = Lo+ fie + fre
and :

a1(d+e) + (4 +e) = Bo+ fie + fre
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(] ] Discovery of common affine relations (2)

Affine sets X and Y :
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(] ] Discovery of common affine relations (2)

Affine sets X and Y :

x3 = 2+4e x1 = 446
X = 246 and x» = 446
X3 = T X3 = T
(Example (cont.) )

1. We replace x; and x> by their expressions :

a1(2+e) + a2+ ) = fo+ fiea + fre2
and :
a1(d+e) + (4 +e) = Bo+ fie + fre
2. The coefficients of the noise symbols must be equal ; we get the
equations : 2a1 + 22 = 4a1 +4az, and o =0, f1 = a1, o =
3. Example of solution : a1 =1, a0 = —1,80=0,61=1,6, = —1
4. Relation : x1 = x2 + €1 — €2
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.. Other steps of the algorithm

4 . )
Algorithm
Assume we have k relations, defining the variables xi, ..., xx. We compute
XUcY
1. Existential quantification : X« and Y5 ( elimination of xi, ..., xk)

2. Componentwise join Zsx = Xsk U Ysi

. 3. Reconstruction )

-
Example
Relation x; = x2 + €1 — 2.

X1 =2+e€ X1 =4+ ¢€
X = X»=24+e Y = X =4+ €
X3=T X3=T
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.. Other steps of the algorithm

4 . )
Algorithm
Assume we have k relations, defining the variables xi, ..., xx. We compute
XUcY
1. Existential quantification : X« and Y5 ( elimination of xi, ..., xk)

2. Componentwise join Zsx = Xsk U Ysi

3. Reconstruction )

-
Example
Relation x; = x2 + €1 — 2.

X1=2+e Xi=4+e Xi=3+ea+n
X = X»=24+e Y = =44+ Z = )'(\2:34-624-17
X3=T X3=T X3=T
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.. Properties

-
Theorem

Z = X Ug Y is an upper bound of X and Y, and if Z~ is a minimal upper
kbound of Xsk and Ysk, then Z is a minimal upper bound of X and Y.
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.. Properties

P
Theorem

Z = X Ug Y is an upper bound of X and Y, and if Z~ is a minimal upper
kbound of Xsk and Ysk, then Z is a minimal upper bound of X and Y.

P
Remarks

> Any relation true for X and Y is also true for Z

» The componentwise join Zsx = Xs« U Ysk is a minimal upper bound if
k=p—1

» We can do the same for the widening
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(] ] Experiments (1) : Loop counter

L/

(Program 1
double x=[0,4];
int i=0;
while i <5 {

i+
x4}

> Issue : (lack of) explicit relation between x and i
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(] ] Experiments (1) : Loop counter

fProgram 1

L/

double x=[0,4];

int i=0;

while i <5 {
i+
x4}

> Issue : (lack of) explicit relation between x and i
» Componentwise join : no convergence (without widening)

> Global join : loop invariant x — i = 2 + 2¢; (thus x € [0,10])
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(] Experiments (2) : Linear recurrence

(Program 2
double x=12;
double x1=12;
double y=16;
double y1=16;
while (true) {
x=x1;
y=yl;
x1=3*x/4 + y/4;
yl=x/4 + 3*y/4;} )
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Experiments (2) : Linear recurrence

(Program 2

double x=12;
double x1=12;
double y=16;
double y1=16;
while (true) {
x=x1;
y=y1;
x1=3*x/4 + y/4;
yl=x/4 + 3*y/4;}

componentwise join
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-x
-y

global join

15\
-y
13-/.
120
123 456 7 8 910 1 121314 15 16

iterations
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B Experiments (3) : Benchmarks

(Program 3

double f(double x) {
return 2*x-3; }

double g(double x) {
return -x+5; }

int main() {
y = f(0); z = g(0);
u=f(.75); v = g(.25);
for (i=1;ij=N; i++) {
x=[0,((double)i)/N];
y=f(x); z=g(x);
u=f(v); v=g(u)/2; }

t=y+2*z; return 0; }

Increasing N increases the number of operations, but does not change the
result.
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Experiments (3) : Benchmarks

- Octagons
- Polyhedra
Taylor1+
-+ Taylor1+gj

+Box

P> >

0 10000 20000 30000 40000 50000 60000

Value of parameter N

Exact result : only polyhedra and zonotopes with global join
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Conclusion

P
Summary

> A nice improvement of the join operator for zonotopes
> Implementation (APRON)

rOngoing work

» Implementation (Fluctuat)

> Imprecise relations

> Policy Iteration
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