Generic Abstraction of Dictionaries and Arrays

Jędrzej Fulara

University of Warsaw

September 10, 2012

Arrays

- Data structure indexed by an initial range of natural numbers
- Fixed size
- Multiple techniques for static analysis of array content

Dictionaries^b

- $\begin{tabular}{ll} \bullet & Arbitrary, possibly \\ & non-numerical keys \mathbb{K} \end{tabular}$
- Variable size
- Not handled by static analysis

Objective

- Abstract Interpretation based technique for analysis of dictionary content
- Fully customisable
 - parametrisable by abstraction of dictionary keys...
 - and dictionary values
- Applicable to analysis of dictionaries and arrays

- ullet \mathbb{K} , \mathbb{V} sets of concrete keys and dictionary values
- $\langle \mathcal{K}, \sqcap_{\mathsf{k}}, \sqcup_{\mathsf{k}}, \alpha_{\mathsf{k}}, \gamma_{\mathsf{k}} \rangle$ and $\langle \mathcal{V}, \sqcap_{\mathsf{v}}, \sqcup_{\mathsf{v}}, \alpha_{\mathsf{v}}, \gamma_{\mathsf{v}} \rangle$ abstract domains for key and dictionary value abstractions
- Abstract dictionary $d \in \mathcal{D}$ as a finite set of pairs $(k, v) \in \mathcal{K} \times \mathcal{V}$ (abstract segments)

- the abstraction is over-approximating:
 - for $(k, v) \in d$, v over-approximates the set of values of elements at keys abstracted by k,
 - a concrete key not represented by any abstract one cannot be initialised

- the abstraction is over-approximating:
 - for $(k, v) \in d$, v over-approximates the set of values of elements at keys abstracted by k,
 - a concrete key not represented by any abstract one cannot be initialised

- the abstraction is over-approximating:
 - for $(k, v) \in d$, v over-approximates the set of values of elements at keys abstracted by k,
 - a concrete key not represented by any abstract one cannot be initialised

- no two abstract keys may overlap:
 - each concrete element is represented by just one abstract segment
- abstract keys and abstract values are non-empty (i.e. $k \neq \bot_{\mathbf{k}}$ and $v \neq \bot_{\mathbf{v}}$)
 - (\bot_k, v) would describe an empty segment
 - (k, \perp_{v}) would describe uninitialised elements

Lattice Operations - meet

Point-wise meet of overlapping segments:

For $a \in \mathcal{D}$

Lattice Operations - meet

Point-wise meet of overlapping segments:

For $a \in \mathcal{D}$ and $b \in \mathcal{D}$:

Lattice Operations - meet

Point-wise meet of overlapping segments:

For $a \in \mathcal{D}$ and $b \in \mathcal{D}$:

$$\begin{split} a \sqcap_{\mathsf{d}} b &\triangleq \big\{ \big(k_{\mathsf{a}} \sqcap_{\mathsf{k}} k_{\mathsf{b}}, v_{\mathsf{a}} \sqcap_{\mathsf{v}} v_{\mathsf{b}} \big) \mid \big(k_{\mathsf{a}}, v_{\mathsf{a}} \big) \in \mathsf{a}, \big(k_{\mathsf{b}}, v_{\mathsf{b}} \big) \in \mathsf{b}, \\ k_{\mathsf{a}} \sqcap_{\mathsf{k}} k_{\mathsf{b}} \neq \bot_{\mathsf{k}}, v_{\mathsf{a}} \sqcap_{\mathsf{v}} v_{\mathsf{b}} \neq \bot_{\mathsf{v}} \big\} \end{split}$$

Lattice Operations - Join

- take the union of the two operands,
- transform it so that no two abstract keys overlap

Lattice Operations - Join

- take the union of the two operands,
- transform it so that no two abstract keys overlap

Lattice Operations - Join

- take the union of the two operands,
- transform it so that no two abstract keys overlap

Disjoint Partitions

Let $A = \langle \mathcal{A}, \sqcap_a, \sqcup_a \rangle$ be a complete lattice and let $S \subseteq \mathcal{A}$

Definition

 $\mathcal{X} = \{X_1, \dots, X_k\}$, where $X_i \subseteq S$, is a disjoint partition of S, iff:

- \mathcal{X} is a partition of S (i.e. $S = \bigcup \mathcal{X}$ and $X_i \cap X_j = \emptyset$ for $i \neq j$),
- for every $X_i, X_j \in \mathcal{X}$, where $i \neq j$, $(\bigsqcup_a X_i) \sqcap_a (\bigsqcup_a X_j) = \bot_a$.

Disjoint Parititions

• disjoint partition always exists (e.g. $\mathcal{X} = \{S\}$),

Disjoint Parititions

- disjoint partition always exists (e.g. $\mathcal{X} = \{S\}$),
- there may be many of them

Disjoint Parititions

- disjoint partition always exists (e.g. $\mathcal{X} = \{S\}$),
- there may be many of them
- the least one is unique

To compute the join $a \sqcup_d b$:

- find the least disjoint partition $\mathcal K$ of keys in $a \cup b$
- for $K \in \mathcal{K}$, take the join of segments from $a \cup b$ with keys in K

Relational Analysis

Goal:

express relations between dictionary keys/values and scalar variables Var

Solution:

- ullet artificial key variable v_k and value-tracking variable v_v
- key abstraction K over $Var \cup \{v_k\}$
- dictionary values abstraction V over $\mathscr{V}ar \cup \{v_v\}$

Initialisation Analysis

Problem:

- our dictionary abstraction D(K, V) is over-approximating,
- no information which dictionary elements must be initialised

Solution:

- separate initialisation analysis using D(K, Bool),
- over-approximates set of uninitialised keys
- segment (k, True): keys abstracted by k may be uninitialised

Abstract Domain

Parameters:

- abstraction of scalars in a domain A(Var)
- key abstraction $K(Var \cup \{v_k\})$
- value abstraction $V(Var \cup \{v_v\})$

The domain:

Abstract state:

$$A \times (\mathcal{V}ar_d \rightarrow D(K, v)) \times (\mathcal{V}ar_d \rightarrow D(K, Bool))$$

- meet and join given point-wise,
- "lazy" widening
 - \bigcirc Abstract states denoted as triples (a, d, i)

Concretisation¹

Informally:

- a key n in a dictionary T may be uninitialised, if there is a segment $(k, True) \in i(T)$, such that n is abstracted by k,
- T[n] may have value e, if $(k, v) \in d(T)$ and n and e are abstracted by k and v, respectively

• read access $x \leftarrow T[e]$,

- read access $x \leftarrow T[e]$,
- compute abstract key k representing e

- read access $x \leftarrow T[e]$,
- compute abstract key k representing e
- find in the dictionary abstract keys intersecting with k

- read access $x \leftarrow T[e]$,
- compute abstract key k representing e
- find in the dictionary abstract keys intersecting with k
- compute join of corresponding abstract values

Dictionary Updates

Consider an update $T[x] \leftarrow 42$.

- Assume that the analysis of scalars captured $x \in [0, 5]$
 - Any of $T[0] \dots T[5]$ may be equal to 42 or to its old value
 - None of them must be equal to 42
 - The old values of $T[0] \dots T[5]$ cannot be purged
 - This is called a weak update
- Assume that $x \in [3, 3]$
 - *T*[3] must be equal to 42
 - Its old value can be forgotten
 - This is called a strong update

Weak Update

• update $T[x] \leftarrow y$,

Weak Update

- update $T[x] \leftarrow y$,
- compute abstract segment (k, v) representing (x, y)

Weak Update

- update $T[x] \leftarrow y$,
- compute abstract segment (k, v) representing (x, y)
- smash segments with overlapping keys

Strong Update

• update $T[x] \leftarrow y$,

Strong Update

- update $T[x] \leftarrow y$,
- compute abstract segment (k, v) representing (x, y)

Strong Update

- update $T[x] \leftarrow y$,
- compute abstract segment (k, v) representing (x, y)
- cut it out from the existing segments

Examples [1/3]

- scalars, key and values abstraction using upper bounds
- each variable mapped to the set of variables greater or equal to it

```
procedure Partition(T, x)
  1 = 0; r = T.length - 1;
  while l < r do
    if T[1] \le x then
      1 = 1 + 1
    else if T[r] >= x then
      r = r - 1
    else
      y = T[r]; T[r] = T[1];
      T[1] = y;
    end if
  end while
```

Found invariant: $\forall_{0 \le m \le l} T[m] \le x$ and $\forall_{l \le n \le T, length} x \le T[n]$.

Examples [2/3]

- scalars and keys: abstraction using product: Upper Bounds × Parity
- dictionary values: abstraction using intervals

```
j = 0; T = new array[n];
while j < n
  if j % 2 = 0 then
   T[j] = 1
  else
   T[j] = 0
  end if
end while</pre>
```

All even elements equal to 1, all odd ones equal to 0.

Examples [3/3]

Dynamic programming languages: object \equiv string-keyed dictionary

- keys: abstraction using regular expressions
- values: abstraction by type (Int, String,...)
- detecting missing attribute errors
- detecting type errors

```
at = "b"
repeat
  setattr(obj, at, 6);
  at = at + "c":
until random() = False;
if random() = True then
  obj.x = 5
else
  obj.x = "text"
end if
x = obj.b - 1;
y = obj.bcc - 1;
z = obj.x - 1;
```

Summary

- new abstract domain for analysis of arbitrary dictionaries
- fully customisable
- starting point to static analysis of dynamic languages