Generic Abstraction of Dictionaries and Arrays

Jedrzej Fulara

University of Warsaw

September 10, 2012

fulara@mimuw.edu.pl NSAD 2012

@ Data structure indexed by an
initial range of natural numbers

o Fixed size

@ Multiple techniques for static
analysis of array content

fulara@mimuw.edu.pl NSAD 2012

Dictionaries

K \Y

@ Arbitrary, possibly - TN
non-numerical keys K S D&
/ N 4 \
@ Variable size [&g é%@ ‘
)\ | /
@ Not handled by static analysis /F/MQ % J

9 /\/ ‘ — '

fulara@mimuw.edu.pl NSAD 2012

@ Abstract Interpretation based technique for analysis of
dictionary content
e Fully customisable

e parametrisable by abstraction of dictionary keys...
e and dictionary values

@ Applicable to analysis of dictionaries and arrays

fulara@mimuw.edu.pl NSAD 2012

Dictionary Abstraction

Concrete Abstract
K v X v
O— &
/)
T b Tv
\‘ <>)
‘ J L—]

o K, V - sets of concrete keys and dictionary values

o (XK, Mg, U, au, v and (¥, M, U, o,) - abstract domains for
key and dictionary value abstractions

@ Abstract dictionary d € D as a finite set of pairs
(k,v) € K x V (abstract segments)

fulara@mimuw.edu.pl

NSAD 2012

Dictionary Abstraction

Concrete

Abstract

o

o for (k,v) € d, v over-approximates the set of values of
elements at keys abstracted by k,

@ a concrete key not represented by any abstract one cannot be
initialised

@ the abstraction is over-approximating:

fulara@mimuw.edu.pl NSAD 2012

Dictionary Abstraction

Concrete Abstract

K A%

@ the abstraction is over-approximating:
o for (k,v) € d, v over-approximates the set of values of
elements at keys abstracted by k,

@ a concrete key not represented by any abstract one cannot be
initialised

fulara@mimuw.edu.pl NSAD 2012

Dictionary Abstraction

Concrete Abstract

@ the abstraction is over-approximating:

o for (k,v) € d, v over-approximates the set of values of
elements at keys abstracted by k,

@ a concrete key not represented by any abstract one cannot be
initialised

fulara@mimuw.edu.pl NSAD 2012

Dictionary Abstraction

@ no two abstract keys may overlap:
e each concrete element is represented by just one abstract
segment
@ abstract keys and abstract values are non-empty (i.e. k # L,
and v # 1))
o (L, v) would describe an empty segment
o (k, L,) would describe uninitialised elements

fulara@mimuw.edu.pl NSAD 2012

Lattice Operations - meet

Point-wise meet of overlapping segments:

———

e

Foraec D

fulara@mimuw.edu.pl NSAD 2012

Lattice Operations - meet

Point-wise meet of overlapping segments:

] -
DI

L]]

ForaecDand be D :

fulara@mimuw.edu.pl NSAD 2012

Lattice Operations - meet

Point-wise meet of overlapping segments:

[]
[+]

ForaecDand be D :

arly b £ {(ka My kp, va T, Vb) ’ (ka, Va) € a, (kb, Vb) € b,
ka I—]k kb 7& J—kv Va [—Iv Vb ;é J—v}

fulara@mimuw.edu.pl NSAD 2012

Lattice Operations - Join

@ take the union of the two operands,

@ transform it so that no two abstract keys overlap

fulara@mimuw.edu.pl NSAD 2012

Lattice Operations - Join

@ take the union of the two operands,

@ transform it so that no two abstract keys overlap

fulara@mimuw.edu.pl NSAD 2012

Lattice Operations - Join

@ take the union of the two operands,

@ transform it so that no two abstract keys overlap

fulara@mimuw.edu.pl NSAD 2012

Disjoint Partitions

Let A= (4,M,,L,) be a complete lattice and let S C 4

Definition

X ={Xi, ..., Xk}, where X; C S, is a disjoint partition of S, iff:
e X is a partition of S (i.e. S=UX and X; N X; = 0 for i # j),
o for every X;, Xj € X, where i # j, (LI, Xi) M. (L, Xj) = L..

fulara@mimuw.edu.pl NSAD 2012

Disjoint Parititions

@ disjoint partition always D

exists (e.g. X = {S}),

5

fulara@mimuw.edu.pl NSAD 2012

Disjoint Parititions

@ disjoint partition always D E
exists (e.g. X = {S}),
@ there may be many of them -

5

fulara@mimuw.edu.pl NSAD 2012

Disjoint Parititions

@ disjoint partition always D E D
exists (e.g. X = {S}),

@ there may be many of them -

@ the least one is unique

To compute the join ally b:

o find the least disjoint partition K of keys in aU b
e for K € I, take the join of segments from aU b with keys in K
[3 Set D forms a lattice under My and L. j

fulara@mimuw.edu.pl NSAD 2012

Relational Analysis

Goal:

@ express relations between dictionary keys/values and scalar
variables Var

Solution:
o artificial key variable vy and value-tracking variable v,
@ key abstraction K over %ar U {v,}

e dictionary values abstraction V over %ar U {v, }

fulara@mimuw.edu.pl NSAD 2012

Initialisation Analysis

Problem:

@ our dictionary abstraction D(K, V) is over-approximating,

@ no information which dictionary elements must be initialised
Solution:

@ separate initialisation analysis using D(K, Bool),

@ over-approximates set of uninitialised keys

e segment (k, True): keys abstracted by k may be uninitialised

fulara@mimuw.edu.pl NSAD 2012

Abstract Domain

Parameters:
@ abstraction of scalars in a domain A(%ar)
o key abstraction K(%Var U {vx})
@ value abstraction V/(%ar U {v,})

The domain:

@ Abstract state:
A x (Varqg — D(K, v)) x (Varg — D(K, Bool))

@ meet and join given point-wise,
@ "lazy” widening

[3 Abstract states denoted as triples (a, d, I)]

fulara@mimuw.edu.pl NSAD 2012

Concretisation

Informally:

@ a key nin a dictionary T may be uninitialised, if there is a
segment (k, True) € i(T), such that n is abstracted by k,

e T[n] may have value e, if (k,v) € d(T) and n and e are
abstracted by k and v, respectively

fulara@mimuw.edu.pl NSAD 2012

Dictionary Read

@ read access x < T|e],

fulara@mimuw.edu.pl NSAD 2012

Dictionary Read

@ read access x < T|¢],

@ compute abstract key k
representing e e /T]

fulara@mimuw.edu.pl NSAD 2012

Dictionary Read

@ read access x < T|e],

@ compute abstract key k
representing e b /]]

@ find in the dictionary
abstract keys intersecting
with k

fulara@mimuw.edu.pl NSAD 2012

Dictionary Read

@ read access x < T|¢],

@ compute abstract key Kk | | _______ ,
representinge | -----

abstract keys intersecting
with k

@ compute join of

corresponding abstract E D

values

o find in the dictionary k I

fulara@mimuw.edu.pl NSAD 2012

Dictionary Updates

Consider an update T[x] < 42.
@ Assume that the analysis of scalars captured x € [0, 5]

o Any of T[0]... T[5] may be equal to 42 or to its old value
o None of them must be equal to 42
o The old values of T[0]... T[5] cannot be purged

[3 This is called a weak update]

@ Assume that x € [3, 3]
o T[3] must be equal to 42
e Its old value can be forgotten
[@ This is called a strong update]

fulara@mimuw.edu.pl NSAD 2012

Weak Update

@ update T[x] « vy,

fulara@mimuw.edu.pl NSAD 2012

Weak Update

e update T[x] <y, Ny
@ compute abstract 1””73 L
segment (k, v) Gk ot Lo

representing (x, y)

fulara@mimuw.edu.pl NSAD 2012

Weak Update

@ update T[x] « vy, T

e compute abstract | |],
segment (k, v) koo
representing (x,y) | - 1

@ smash segments with
overlapping keys

fulara@mimuw.edu.pl NSAD 2012

Strong Update

@ update T[x] « vy,

fulara@mimuw.edu.pl NSAD 2012

Strong Update

@ update T[x] « vy,
@ compute abstract [—
segment (k,v) |
representing (x, y) i Kk Ll T
| I

fulara@mimuw.edu.pl NSAD 2012

Strong Update

@ update T[x] « vy,

@ compute abstract
segment (k, v)
representing (x, y) PR

@ cut it out from the
existing segments

fulara@mimuw.edu.pl NSAD 2012

Examples [1/3]

procedure Partition(T, x)
1=0; r="T.length - 1;

@ scalars, key and values while 1 < r do
abstraction using upper if T[1] <= x then
bounds 1=1~+1
else if T[r] >= x then
@ each variable mapped to the r=r -1
set of variables greater or else
equal to it y = Tlrl; TIr] = T[1];
T[1] = y;
end if
end while

[@ Found invariant: Yo<m<; T[m] < x and Vicn< T jengthx < T[n]. J

fulara@mimuw.edu.pl NSAD 2012

Examples [2/3]

j = 0; T = new array[n];

@ scalars and keys: abstraction while j < n

using product: if j % 2 = 0 then
Upper Bounds x Parity T[]l =1
@ dictionary values: abstraction el;?j] -0
using intervals ond if
end while

[3 All even elements equal to 1, all odd ones equal to O.]

fulara@mimuw.edu.pl NSAD 2012

Examples [3/3]

Dynamic programming languages: object = string-keyed dictionary

@ keys: abstraction using regular
expressions

@ values: abstraction by type
(Int, String,...)

o detecting missing attribute
errors

@ detecting type errors

at = llbII

repeat
setattr(obj, at, 6);
at = at + "c";

until random() = False;

if random() = True then
obj.x = 5

else
obj.x = "text"

end if

X = obj.b - 1;

obj.bcc - 1;

z = obj.x - 1;

~<
]

fulara@mimuw.edu.pl NSAD 2012

@ new abstract domain for analysis of arbitrary dictionaries
o fully customisable

@ starting point to static analysis of dynamic languages

fulara@mimuw.edu.pl NSAD 2012

