



# Access-Based Localization for Octagons

Eva Beckschulze (RWTH Aachen),
Jörg Brauer (Verified Systems
International GmbH, Bremen),
Stefan Kowalewski (RWTH Aachen)

#### Motivation

Inefficiency in fixed-point computations:

propagating large abstract states

- → requires memory
- → operations take a lot of time
- Idea of access-based localization:

propagate only those parts of the abstract state that are accessed

- "Access Analysis-based Tight Localization of Abstract Memories"
  - written by Oh et al. (2011)



#### Localization for Intervals

```
main(){
                                                 x ≤ 4
                                                 y ≤ 0
  assume (x \le 4);
                                                             x ≤ 4
  assume (y \le 0);
                                                 y ≤ 0
  g();
                                                                       X++;
                                                   return €
                                                             x ≤ 5
g(){
                                                 x ≤ 5
                               only x is
  x++;
                                                 y ≤ 0
                            accessed in g!
```

## What about octagonal constraints?

- we deal with octagonal constraints of the form ± x ± y ≤ c
- which relational constraints should be propagated to a procedure?



#### 1st Approach: access-based



- relational constraint is not transferred to g
- update of  $x + y \le 2$  is lost
- delete relational constraint to be sound
- → loss of information

## 2nd Approach: dependency-based

- Transfer relational constraint, too
- relational constraint is updated correctly
- though, the reduction of the size of input state is smaller



## 3rd Approach: anchoring



- Introduce a slack
   variable x<sub>slack</sub> = x
- use x<sub>slack</sub> to keep track of all changes to x
- combine constraints to obtain relational constraints x + y<sub>i</sub> ≤ c<sub>i</sub> + 1

#### **Implicit Constraints**

- implicit constraints are those derived from other constraints
- e.g.  $x \le 4$  and  $y \le 0$  implies  $x + y \le 4$
- octagonal transfer functions require that all implicit constraints have been derived, i.e. that the octagon is closed (normal form)
- the dependency-based approach suffers from implicit constraints (all variables depend on each other)

### Significant Constraints

We call a constraint significant if it contains more information than interval bounds





- → Transfer only significant constraints (dep-based approach)
- → Introduce slack variables only for those variables that are part of a significant constraint (anchoring approach)

# **Localization Formally**



#### Experiments

- experiments based on a prototype implementation in JAVA
- flow and context sensitive value range analysis based on octagons
- each analysis starts in main with an octagon relating all accessed variables to each other and reduce the octagon at call sites
- we tested a few simple C programs

#### **Experiments - Results**

- with localization we can analyze more programs
  - → analysis requires less memory
- the dependency-based approach still propagates many constraints
- localization decreases the number of necessary re-analyses of procedures
  - this effect is distinct for both the access-based and the anchoring approach

#### Related Work

- Octagon Packing (Miné 2006)
  - relate only few variables to each other
  - pre-analysis determines fixed packing
- Work on localization by Oh et al.
  - Access Analysis-based Tight Localization of Abstract Memories (2011)
  - Access-based Localization with Bypassing (2011)
  - Design and Implementation of Sparse Global Analyses for C-like Languages (2012)

#### Conclusion

- Localization for a relational domain is more complicated than for intervals
- Determination of significant constraints is important for access-based localization for octagons

# Thank you very much!