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Parallelotope
● Weak relational abstract domain

– No restriction on the single constraint
● Any affine constraint may appear in an abstract object

– Limitations on the number and combination of 
constraints

● Linear forms of constraints should be linearly 
independent

– Hence, it is not a template domain
● Template parallelotopes (and methods to generate 

templates) were the topic of a previous paper [SAS 
2010].
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What is a parallelotope?
● A many-dimensional generalization of a 

parallelogram.

1-dimensional ptope
(interval)

2-dimensional ptope
(parallelogram)

3-dimensional ptope
(parallelepiped)
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What is a parallelotope?
● Several formal definitions:

– The sum of linearly independent segments
● Hence,  a parallelotope is a zonotope

– The image of a box trough a linear transformation

x '= x+2y+1
y ' = y
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Representation of parallelotopes
● A triple <A,m,M>

– A is an invertible matrix in 

– m, M are vectors in

● Represents { x | m ≤ Ax ≤ M }

ℝ
n

ℝ
n

−∞≤ x+ y≤1
−1≤x− y≤1⏟

A=(1 1
1 −1) m=(−∞

−1 ) M=(1
1)

shape
or

template

bounds

n = number of
variables
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Change of shape
● Given P=<A,m,M>, which is the least ptope 

containing P with shape B ?

P

B

α
B
(P)
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Change of shape
● Given P=<A,m,M>, which is the least ptope 

containing P with shape B ?

● For each row b
i
 of B

– Minimize/maximize scalar product b
i
·x on P

–

–

● Return <B,l,u>

l i=inf x∈P b i⋅x=inf m≤ y≤M b i⋅( A−1 y)

u i=supx∈P b i⋅x=supm≤ y≤M b i⋅( A−1 y)
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● P=<A,m,M> is a subset of  P'=<A',m',M'> ?
– If A=A' just compare m/m' and M/M'

– … otherwise compare α
A'

(P) and P'

● Normalization?
– Several possible normalizations

– … but we did not explore them fully

Ordering on parallelotopes
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Abstraction map?
● Does an abstraction map exist to establish a Galois 

connection?
– Given a set of points, is there the least ptope 

containing them?



09/16/12 NSAD 2012 10

Least parallelotope ?

● In this case the least parallelotope exists
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Minimal parallelotopes

● No least parallelotope, but many minimal ones.
● No Galois connection framework.
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Relatively optimal parallelotope

● The green square is not minimal
● …. however, its the least correct one of the given 

shape
● We call it relatively optimal
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Semantic Transformers
● Concrete transformers

– Affine assignment
● Invertible, Non-invertible

– Non-deterministic assignment

– Refinement by linear inequality (test)

– Union

● We strive to find abstract transformers which are

– γ-complete

– Minimal

– Relatively optimal
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Inv. Assignment: x'=x+2y+1
● Invertible affine transformations map parallelotopes 

to parallelotopes.

x '= x+2y+1

0≤ x≤1
0≤ y≤1

0≤x '−2y+1≤2
0≤ y≤1

γ-complete!
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Non-deterministic assignment: x=?
● Sum of the parallelotope with the line corresponding 

to x axis

P

x

P+x

y

z

not a 
ptope
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Non-det. assignment: x=? (good case)

3≤ x+ y+z≤3
0≤ y− z≤1

0≤−2x+ y+ z≤1

x appears in an 
equation

3≤ x+ y+z≤3
0≤ y− z≤1

6≤3y+3z≤7

−∞≤ x+ y+z≤+∞
0≤ y− z≤1

6≤3y+3z≤7

Normalize, replacing x with 3-y-z in 
all the other inequations 

Remove bounds in the equation

γ-complete!
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Non-det. Assignment: x=? (bad case)

0≤x+ y+ z≤3
0≤ y− z≤1

0≤−2x+ y+ z≤1

0≤x+ y+ z≤3
0≤ y−z≤1

0≤3y+3z≤7

−∞≤ x+ y+z≤+∞
0≤ y− z≤1

0≤3y+3z≤7

Combine pivot with all the others 
inequations where x appears

Remove bounds in the equation

minimal

pivot

x only appears in
inequations
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Non-invertible Assignment: x=2y+z-1

0≤x+ y+ z≤3
0≤ y− z≤1

0≤−2x+ y+ z≤1

−∞≤ x+ y+z≤+∞
0≤ y− z≤1

6≤− y−z≤7

−1≤x−2y−z≤−1
0≤ y−z≤1

6≤− y−z≤7

non-det.
assignment

replace the only row
containing x

with the new equation

minimal or 

γ-complete
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Linear refinement: -2x+y ≥ 0
● Easy case:

 

−∞≤ x+ y≤+∞
−1≤ x− y≤1

0≤−2x+ y≤+∞
−1≤ x− y≤1

linear 
independent

γ-complete!

choose an unbounded
line
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Linear refinement

keep th
e same shape

replace a bound

relatively 
optimal

● Difficult case:



09/16/12 NSAD 2012 21

Union (weak)
● The weak union is similar to join of template 

polyhedra.

chose on shape

or the other
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Union (weak)
● Weak union never creates new constraints

 
● Useful for widening

we want

weak union
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Union (inversion based)
● A smarter union based on inverse join

– collect all the linear forms of the bounding 
hyperplanes

● for the original parallelotopes
● generated by inversion

– prioritize them according to some heuristics

– choose a subset of linear forms which is a basis of 
the vector space and which maximizes priorities

– compute the relatively optimal parallelotope with the 
shape given by the chosen linear forms 
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Collecting linear forms

linear form generated
by inversion

linear forms in the
original ptopes
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Prioritizing linear forms
● For each linear form, compute the bounds for the 

original parallelotopes

Bounds are the same
Priority 1

lower values are
higher priority
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Prioritizing linear forms

Bounds intersect
Priority 2

● For each linear form, compute the bounds for the 
original parallelotopes
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Prioritizing linear forms
● For each linear form, compute the bounds for the 

original parallelotopes

Bounds do not intersect
Priority 3
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Choose linear forms
● Collect

– In order of priority

– Until we get a linearly 
independent set

● Easy in this case
● In the general case, follow

– Gaussian elimination

– or QR factorization

and use pivots

relatively 
optimal



09/16/12 NSAD 2012 29

Precision
● Parallelotope is

– More precise than Karr's analysis

– Less precise than polyhedra 
● with standard join or inverse join

– Incomparable with all the other domains
● even with interval domain
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Complexity

Operation Parallelotopes Karr's lin. eq. Octagons
(with normal.)

Check equality n3 n2 n2

Assignment n2 n2 n2

n.d. Assignment n2 n2 n

Refinement n3 n2  (equality) n3

Union n4 n3 n2

Widening n3 -- n3
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Example

i = 2
j = k+5
While (TRUE) 
{
  i = i+1
  j = j+3
}  

● Invariants
– 3i – j + k = 1

– 2 ≤ i

– k+5 ≤ j

Found by parallelotope
analysis

implied by the first twos
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Example

i = 2
j = 0
while (TRUE)   
{

if (i*i==4)
i = i+4

 else {
j = j+1
i = i+2

}
}

● Invariants:
– i+2j ≤ 6

– 0 ≤ j

– 2j – i ≤ -2

Found by parallelotope
analysis

found during inversion join,
but discharged in favor of

the first twos
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Strong and weak points
● Strong points

– No limits on the complexity of constraints

– Reasonably fast

● Weak points
– Few constraints may be handled simultaneously 

– Require rational arithmetic when analyzing floating 
point variables

● but we didn't try very hard to use floating points
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How to improve
● Parallelotope as an auxiliary domain

– To be combined with domains such as Octagon, 
TVPI, Interval

– The base domain compute the “standard invariants”

– For constraints outside the reach of the standard 
domain, parallelotopes may help

● How to combine?
– Reduced product? Difficult

– Transfer function between the two domains

– Need to tune Parallelotope to avoid invariants 
handled by the base domain
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