The Abstract Domain of Parallelotopes

Gianluca Amato

Joint work with Francesca Scozzari
Università di Chieti-Pescara
Parallelootope

- Weak relational abstract domain
 - No restriction on the single constraint
 - Any affine constraint may appear in an abstract object
 - Limitations on the number and combination of constraints
 - Linear forms of constraints should be linearly independent
 - Hence, it is not a template domain
 - Template parallelotopes (and methods to generate templates) were the topic of a previous paper [SAS 2010].
What is a parallelootope?

- A many-dimensional generalization of a parallelogram.

1-dimensional ptope (interval)

2-dimensional ptope (parallelogram)

3-dimensional ptope (parallelepiped)
What is a parallelootope?

• Several formal definitions:

 – The sum of linearly independent segments

 • Hence, a parallelootope is a zonotope

 – The image of a box through a linear transformation

 \[x' = x + 2y + 1 \]

 \[y' = y \]
Representation of paralleloptopes

- A triple \(<A,m,M> \)
 - \(A \) is an invertible matrix.
 - \(m, M \) are vectors in \(\mathbb{R}^n \).

- Represents \(\{ x | m \leq Ax \leq M \} \)

\[\begin{align*}
 -\infty \leq x + y &\leq 1 \\
 -1 \leq x - y &\leq 1
\end{align*} \]

\[
A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad m = \begin{pmatrix} -\infty \\ -1 \end{pmatrix} \quad M = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

\(n = \text{number of variables} \)
Change of shape

- Given $P = \langle A,m,M \rangle$, which is the least ptope containing P with shape B?
Change of shape

- Given \(P = \langle A, m, M \rangle \), which is the least ptope containing \(P \) with shape \(B \)?

- For each row \(b_i \) of \(B \):
 - Minimize/maximize scalar product \(b_i \cdot x \) on \(P \)
 - \(l_i = \inf_{x \in P} b_i \cdot x = \inf_{m \leq y \leq M} b_i \cdot (A^{-1} y) \)
 - \(u_i = \sup_{x \in P} b_i \cdot x = \sup_{m \leq y \leq M} b_i \cdot (A^{-1} y) \)

- Return \(\langle B, l, u \rangle \)
Ordering on parallelotopes

- $P = \langle A, m, M \rangle$ is a subset of $P' = \langle A', m', M' \rangle$?
 - If $A = A'$ just compare m/m' and M/M'
 - … otherwise compare $\alpha_{A'}(P)$ and P'

- Normalization?
 - Several possible normalizations
 - … but we did not explore them fully
Abstraction map?

• Does an abstraction map exist to establish a Galois connection?
 – Given a set of points, is there the least ptope containing them?
Least parallelotope?

- In this case the least parallelotope exists
Minimal paralleloptopes

- No least paralleloptope, but many minimal ones.
- No Galois connection framework.
Relatively optimal parallelotope

- The green square is not minimal
- …. however, its the least correct one of the given shape
- We call it relatively optimal
Semantic Transformers

- Concrete transformers
 - Affine assignment
 - Invertible, Non-invertible
 - Non-deterministic assignment
 - Refinement by linear inequality (test)
 - Union

- We strive to find abstract transformers which are
 - γ-complete
 - Minimal
 - Relatively optimal
Inv. Assignment: $x' = x + 2y + 1$

- Invertible affine transformations map parallelotopes to parallelotopes.

$0 \leq x \leq 1$
$0 \leq y \leq 1$

$0 \leq x' - 2y + 1 \leq 2$
$0 \leq y \leq 1$
Non-deterministic assignment: $x=?$

- Sum of the parallelotope with the line corresponding to x axis

$P_x = P + x$

\[y \]

\[z \]

not a ptope
Non-det. assignment: $x=\,?$ (good case)

\[
\begin{align*}
3 \leq & x + y + z \leq 3 \\
0 \leq & y - z \leq 1 \\
0 \leq & -2x + y + z \leq 1 \\
\end{align*}
\]

- x appears in an equation

Normalize, replacing x with $3-y-z$ in all the other inequations

\[
\begin{align*}
3 \leq & x + y + z \leq 3 \\
0 \leq & y - z \leq 1 \\
6 \leq & 3y + 3z \leq 7 \\
\end{align*}
\]

Remove bounds in the equation

\[
\begin{align*}
-\infty \leq & x + y + z \leq +\infty \\
0 \leq & y - z \leq 1 \\
6 \leq & 3y + 3z \leq 7 \\
\end{align*}
\]

y-complete!
Non-det. Assignment: $x=?$ (bad case)

\[\begin{align*}
0 & \leq x + y + z \leq 3 \\
0 & \leq y - z \leq 1 \\
0 & \leq -2x + y + z \leq 1
\end{align*} \]

x only appears in inequations

pivot

Combine pivot with all the others inequations where x appears

\[\begin{align*}
0 & \leq x + y + z \leq 3 \\
0 & \leq y - z \leq 1 \\
0 & \leq 3y + 3z \leq 7
\end{align*} \]

Remove bounds in the equation

\[\begin{align*}
-\infty & \leq x + y + z \leq +\infty \\
0 & \leq y - z \leq 1 \\
0 & \leq 3y + 3z \leq 7
\end{align*} \]
Non-invertible Assignment: $x=2y+z-1$

0 ≤ $x+y+z$ ≤ 3
0 ≤ $y-z$ ≤ 1
0 ≤ $-2x+y+z$ ≤ 1

$-\infty$ ≤ $x+y+z$ ≤ $+\infty$
0 ≤ $y-z$ ≤ 1
6 ≤ $-y-z$ ≤ 7

-1 ≤ $x-2y-z$ ≤ -1
0 ≤ $y-z$ ≤ 1
6 ≤ $-y-z$ ≤ 7

replace the only row containing x

with this new equation

non-det. assignment

minimal or y-complete
Linear refinement: \(-2x + y \geq 0\)

- Easy case:

\[
\begin{align*}
-\infty \leq x + y & \leq +\infty \\
-1 \leq x - y & \leq 1
\end{align*}
\]

\begin{align*}
0 \leq -2x + y & \leq +\infty \\
-1 \leq x - y & \leq 1
\end{align*}

choose an unbounded line

linear independent

\(y\)-complete!
Linear refinement

• Difficult case:
Union (weak)

- The weak union is similar to join of template polyhedra.
Union (weak)

- Weak union never creates new constraints

- Useful for widening
Union (inversion based)

- A smarter union based on inverse join
 - collect all the linear forms of the bounding hyperplanes
 - for the original parallelotopes
 - generated by inversion
 - prioritize them according to some heuristics
 - choose a subset of linear forms which is a basis of the vector space and which maximizes priorities
 - compute the relatively optimal parallelotope with the shape given by the chosen linear forms
Collecting linear forms

linear forms in the original ptopes

linear form generated by inversion
Prioritizing linear forms

- For each linear form, compute the bounds for the original parallelotopes

Bounds are the same
Priority 1

lower values are higher priority
Prioritizing linear forms

• For each linear form, compute the bounds for the original parallelotopes

Bounds intersect
Priority 2
Prioritizing linear forms

• For each linear form, compute the bounds for the original parallelotopes

Bounds do not intersect
Priority 3
Choose linear forms

• Collect
 – In order of priority
 – Until we get a linearly independent set

• Easy in this case

• In the general case, follow
 – Gaussian elimination
 – or QR factorization

and use pivots
Precision

• Parallelotope is
 – More precise than Karr's analysis
 – Less precise than polyhedra
 • with standard join or inverse join
 – Incomparable with all the other domains
 • even with interval domain
Complexity

<table>
<thead>
<tr>
<th>Operation</th>
<th>Parallelotopes</th>
<th>Karr's lin. eq.</th>
<th>Octagons (with normal.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check equality</td>
<td>n^3</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Assignment</td>
<td>n^2</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>n.d. Assignment</td>
<td>n^2</td>
<td>n^2</td>
<td>n</td>
</tr>
<tr>
<td>Refinement</td>
<td>n^3</td>
<td>n^2 (equality)</td>
<td>n^3</td>
</tr>
<tr>
<td>Union</td>
<td>n^4</td>
<td>n^3</td>
<td>n^2</td>
</tr>
<tr>
<td>Widening</td>
<td>n^3</td>
<td>--</td>
<td>n^3</td>
</tr>
</tbody>
</table>
Example

- Invariants

\[\begin{align*}
 &- 3i - j + k = 1 \\
 &- 2 \leq i \\
 &- k+5 \leq j
\end{align*} \]

- Found by parallelootope analysis

- implied by the first twos

Example

\[i = 2 \\
j = k + 5 \\
\text{While (TRUE)}\{ \\
 i = i + 1 \\
 j = j + 3 \\
\} \]
Example

- Invariants:

 - $i + 2j \leq 6$
 - $0 \leq j$
 - $2j - i \leq -2$

 Found by parallelootope analysis

 found during inversion join, but discharged in favor of the first twos
Strong and weak points

• Strong points
 – No limits on the complexity of constraints
 – Reasonably fast

• Weak points
 – Few constraints may be handled simultaneously
 – Require rational arithmetic when analyzing floating point variables
 • but we didn't try very hard to use floating points
How to improve

• Paralleloptope as an auxiliary domain
 – To be combined with domains such as Octagon, TVPI, Interval
 – The base domain compute the “standard invariants”
 – For constraints outside the reach of the standard domain, paralleloptopes may help

• How to combine?
 – Reduced product? Difficult
 – Transfer function between the two domains
 – Need to tune Paralleloptope to avoid invariants handled by the base domain