The Abstract Domain of Parallelotopes

Parallelotope

- Weak relational abstract domain
 - No restriction on the single constraint
 - Any affine constraint may appear in an abstract object
 - Limitations on the number and combination of constraints
 - Linear forms of constraints should be linearly independent
 - Hence, it is not a template domain
 - Template parallelotopes (and methods to generate templates) were the topic of a previous paper [SAS 2010].

What is a parallelotope?

• A many-dimensional generalization of a parallelogram.

1-dimensional ptope (interval)

2-dimensional ptope (parallelogram)

3-dimensional ptope (parallelepiped)

NSAD 2012

What is a parallelotope?

• Several formal definitions:

- The sum of linearly independent segments

• Hence, a parallelotope is a *zonotope*

- The image of a box trough a linear transformation

$$x' = x + 2y + 1$$

$$y' = y$$

Representation of parallelotopes

Change of shape

 Given P=<A,m,M>, which is the least ptope containing P with shape B ?

Change of shape

- Given P=<A,m,M>, which is the least ptope containing P with shape B ?
- For each row **b**_i of B

– Minimize/maximize scalar product $\mathbf{b}_{\mathbf{i}} \cdot \mathbf{x}$ on P

$$-l_i = \inf_{x \in P} \boldsymbol{b}_i \cdot \boldsymbol{x} = \inf_{\boldsymbol{m} \leq \boldsymbol{y} \leq \boldsymbol{M}} \boldsymbol{b}_i \cdot (\boldsymbol{A}^{-1} \boldsymbol{y})$$

$$- u_i = \sup_{x \in P} b_i \cdot x = \sup_{m \le y \le M} b_i \cdot (A^{-1}y)$$

• Return <B,**l**,**u**>

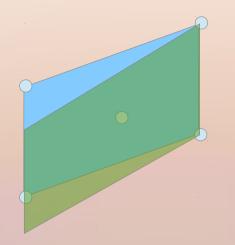
Ordering on parallelotopes

- P=<A,m,M> is a subset of P'=<A',m',M'>?
 - If A=A' just compare m/m' and M/M'

– ... otherwise compare $\alpha_{A'}(P)$ and P'

- Normalization?
 - Several possible normalizations
 - ... but we did not explore them fully

Abstraction map?


- Does an abstraction map exist to establish a Galois connection?
 - Given a set of points, is there the least ptope containing them?

Least parallelotope ?

• In this case the least parallelotope exists

Minimal parallelotopes

No least parallelotope, but many minimal ones.No Galois connection framework.

Relatively optimal parallelotope

- The green square is not minimal
- however, its the least correct one of the given shape
- We call it relatively optimal

Semantic Transformers

- Concrete transformers
 - Affine assignment
 - Invertible, Non-invertible
 - Non-deterministic assignment
 - Refinement by linear inequality (test)
 - Union
- We strive to find abstract transformers which are
 - γ-complete
 - Minimal
 - Relatively optimal

Inv. Assignment: x'=x+2y+1

• Invertible affine transformations map parallelotopes to parallelotopes.

Non-deterministic assignment: x=?

• Sum of the parallelotope with the line corresponding to x axis

Non-det. assignment: x=? (good case)

Non-invertible Assignment: x=2y+z-1

Linear refinement: $-2x+y \ge 0$

Linear refinement

20

Union (weak)

• The weak union is similar to join of template polyhedra.

Union (weak)

• Weak union never creates new constraints

• Useful for widening

Union (inversion based)

- A smarter union based on inverse join
 - collect all the linear forms of the bounding hyperplanes
 - for the original parallelotopes
 - generated by inversion
 - prioritize them according to some heuristics
 - choose a subset of linear forms which is a basis of the vector space and which maximizes priorities
 - compute the relatively optimal parallelotope with the shape given by the chosen linear forms

Collecting linear forms

Prioritizing linear forms

• For each linear form, compute the bounds for the original parallelotopes

Prioritizing linear forms

• For each linear form, compute the bounds for the original parallelotopes

Bounds intersect Priority 2

Prioritizing linear forms

• For each linear form, compute the bounds for the original parallelotopes

Bounds do not intersect Priority 3

Choose linear forms

- Collect
 - In order of priority
 - Until we get a linearly independent set
- Easy in this case
- In the general case, follo
 - Gaussian elimination
 - or QR factorization

and use pivots

Precision

- Parallelotope is
 - More precise than Karr's analysis
 - Less precise than polyhedra
 - with standard join or inverse join
 - Incomparable with all the other domains
 - even with interval domain

Complexity

Operation	Parallelotopes	Karr's lin. eq.	Octagons (with normal.)
Check equality	n ³	n ²	n ²
Assignment	n ²	n ²	n ²
n.d. Assignment	n ²	n ²	n
Refinement	n ³	n ² (equality)	n ³
Union	n ⁴	n ³	n ²
Widening	n ³		n ³

Example

Strong and weak points

- Strong points
 - No limits on the complexity of constraints
 - Reasonably fast
- Weak points
 - Few constraints may be handled simultaneously
 - Require rational arithmetic when analyzing floating point variables
 - but we didn't try very hard to use floating points

How to improve

- Parallelotope as an auxiliary domain
 - To be combined with domains such as Octagon, TVPI, Interval
 - The base domain compute the "standard invariants"
 - For constraints outside the reach of the standard domain, parallelotopes may help
- How to combine?
 - Reduced product? Difficult
 - Transfer function between the two domains
 - Need to tune Parallelotope to avoid invariants handled by the base domain